<mark id="062h1"><delect id="062h1"></delect></mark><small id="062h1"><dfn id="062h1"><address id="062h1"></address></dfn></small>

      <tbody id="062h1"></tbody>
      <menuitem id="062h1"><tt id="062h1"></tt></menuitem>
      <menuitem id="062h1"><tt id="062h1"></tt></menuitem>
    1. <mark id="062h1"><delect id="062h1"></delect></mark>
      <code id="062h1"></code>

      <mark id="062h1"><delect id="062h1"></delect></mark>
      南通第二機床有限公司

      中國機床工具工業協會磨床分會理事單位,ISO9001:2000認證企業

      0513-87119922
      技術交流

      高速磨床CAE設計

      發布時間:2019/7/26
        相對于普通磨床,高速磨床磨削加工要求的精度更高,磨削機理更為復雜。為了滿足高速磨削工藝的要求,首先對機床本身提出了非常高的要求:高速磨削機床必須具備足夠高的主軸轉速、高的動力學性能以及高剛度和吸振性能,要實理這些目標,需要借助CAE(Corn-puter Aided Engineering,計算機輔助工程)技術在機床結構優化、機床動態性能優化、機床熱變形特性分析與優化、機床各部件的接觸傳動分析、機床振動與噪聲分析、機床多體柔性動力學分析、機床零部件物理特性參數反求技術以及機床運動仿真和優化設計技術等八個方面進行分析以達到高速磨床的性能要求。
        CAE指利用計算機系統的強大計算和分析手段,對產品模型進行工程分析計算、校核和仿真模擬的技術。CAE是用計算機輔助求解復雜工程和進行產品結構強度、剛度、屈曲穩定性、動力響應、熱傳導、三維多體接觸、彈塑性等力學性能的分析計算以及進行結構性能的優化設計等的一種近似數值分析方法。
        CAE系統的核心思想是結構的離散化,即將實際結構離散為有限數目的規則單元組合體,實際結構的物理性能可以通過對離散體進行分析,得出滿足工程精度的近似結果來替代對實際結構的分析。其基本過程是將一個形狀復雜的連續體的求解區域分解為有限的形狀簡單的子區域,即將一個連續體簡化為由有限個單元組合的等效組合體;通過將連續體離散化,把求解連續體的場變量(應力、位移、壓力和溫度等)問題簡化為求解有限的單元節點上的場變量。此時得到的基本方程是一個代數方程組,求解后得到近似的數值解,其近似程度取決于所采用的單元類型、數量以及對單元的插值函數。
        應用CAE技術,可取代相當部分的傳統物理試件和試驗,同時設計人員能夠更快捷、更容易地判斷所設計的產品功能、性能和各種指標的優劣,進行設計方案的校驗、評價分析和仿真優化,甚至能夠實現某些物理試驗難以做到的分析評價及仿真,減少物理試驗及試件的制作,從根本上改變傳統設計中依賴試湊、類比和定性分析的原始做法,實現迅速、直觀、準確的量化評價和預測。CAE分析包括有限元分析、邊界元分析、優化設計、仿真、可靠性分析、模態分析等。下面簡要介紹一下幾種常見的計算機輔助工程技術。
        1.有限元法
        有關有限元法具體介紹請參見相關小節文章,但是,隨著平面磨床分析精度要求越來越高,有限元技術所固有的缺陷也越來越明顯。
        1)有限元法需要在產品的幾何模型上另外生成一個離散的網格模型。離散后的計算模型與實際結構在幾何和拓撲上都存在著很大的差別(如機床結構中的倒角、退刀槽和小圓孔等一般需簡化),以致得到的變形結果相對較精確,而應力精度很差。對于復雜形狀和結構復雜的高檔數控機床,網格模型的建立也絕非易事。
        2)有限元法中使用的多種單元都基于一定的假設,一方面會降低計算精度(特別是在容易產生應力集中的結構連接處),另一方面要求使用者要具備比較深厚的理論基礎,必須了解各種單元的使用范圍和計算誤差估計,以便對分析結果給出合理解釋。這是目前有限元技術在國內機床行業難以推廣的主要原因。
        由于有限元法屬于一種近似計算方法,而在機床的動靜剛度特性和整機動態特性分析時,忽略一些細小特征勢必會影響到分析計算的精度,如果對某些關鍵部位處理不當,甚至會得出錯誤的結果,于是將選擇采用一種完整實體應力分析的方法,避免有限元法使用的抽象的一維、二維單元,避免對結構作幾何上的簡化,這則用到下面將要介紹的邊界元分析方法。
        五邊界元法
        邊界元法是以定義在邊界上的邊界積分方程為控制方程,通過對邊界插值離散,化為代數方程組求解。它與基于偏微分方程的區域解法相比,由于降低了問題的維數,而顯著降低了自由度數,邊界的離散也比區域的離散方便得多,可用較簡單的單元準確地模擬邊界形狀,最終得到階數較低的線性代數方程組。又由于它利用微分算子的解析的基本解作為邊界積分方程的核函數,而具有解析與數值相結合的特點,通常具有較高的精度。特別是對于邊界變量變化梯度較大的問題,如應力集中問題,或邊界變量出現奇異性的裂紋問題,邊界元法被公認為比有限元法更加精確高效。由于邊界元法所利用的微分算子基本解能自動滿足無限遠處的條件,因而邊界元法特別便于處理無限域以及半無限域問題。邊界元法的主要缺點是它的應用范圍以存在相應微分算子的基本解為前提,對于非均勻介質等問題難以應用,故其適用范圍遠不如有限元法廣泛,而且通常由它建立的求解代數方程維的系數陣是非對稱滿陣,對解題規模產生較大限制。
        邊界元法的基礎:邊界元法是基于控制微分方程的基本解來建立相應的邊界積分方程,再結合邊界的剖分而得到的離散算式。
        邊界元法的基本步驟:
        1)找出所研究問題的微分方程表達式及其基本解。
        2)通過變換微分方程為邊界上的積分方程,根據使用的方法不問,可分為加權余量法和使用格林公式變形法。
        3)獲得相應的邊界積分方程。
        4)離散邊界積分方程,即把邊界分割成Ⅳ個邊界單元,對常單元,節點取在邊界單元的中點,邊界上的函數值和函數的法向導數值在邊界上設為常量并等于節點值,以此來離散邊界積分方程。
        5)求解方程組,一般有解析法和高斯積分法。
        6)計算區域內任意點函數值,得到邊界上所有的未知值之后,將整個邊界上的函數值和函數的法向導數值代入離散后的積分方程式就可以計算區域內任意點的函數值。
        最近,湖南大學CAE分析研究組提出了邊界面法(BFM),該方法繼承了以邊界積分方程為基礎的邊界元方法的許多優良特點。例如,它只需要對邊界進行離散,使求解問題域降低一級,很大程度上簡化了分析和計算程序,也可以方便地求解無限域和奇異性等問題。然而,更重要的是,這種方法是直接基于邊界表征的CAD模型,以精確豹幾何為基礎。不管以多么粗糙的網格離散,分析幾何是精確的。另外,在自適應網格細分過程中,不需要再與 CAD系統進行反復的交互,使自適應分析變得簡單。
        以邊界表征的CAD模型的曲面都為參數曲面。邊界面法是建立在以數學解析表達的參數曲面的基礎上的。不論是對邊界的積分和還是對場變量的插值都是在曲面的參數空間里完成韻。首先,把參數曲面離散成若干個等幾何的參數曲面單元。單元節點i記錄的是曲面參數空間的參數坐標值(Ui,tJi),麗非三維空問的物理坐標值(戈i,yi,z;)。參數曲,面單元相當于分片曲面(Su血ce Patch)。在數值積分過程中,被積函數的幾何變量,比如高斯積分點的坐標、雅可比、外法向量是直接通過參數曲面單元中的曲面參數變量計算獲得的,而不是通過Lagrange或Hermite插值得到的。在參數空間里,可以通過移動最小二乘法(MLS)、非均勻有理B樣條(NURBS)等方法對未知場變量的進行插值逼近。直接在曲面的參數空間內進行邊界積分,直接利用CAD造型系統中參數曲面的幾何信息是邊界面法與當今主流CAE軟件采用的有限元法的重要不同之處。有限元法和傳統邊界元法中,函數的插值和數值積分(能量積分或邊界積分)都是在規則的單元內進行,且必須依賴于單兀。邊界面法中需要的分析計算變量全部定義在CAD的幾何上,因而自然地與實體造型系統融為一體。
        該方法直接基于邊界表征的CAD模型,很容易做到與CAD軟件的無縫連接。數值實例表明,該方法比傳統邊界元法精度高,也具有很高的收斂性。
        3.優化設計
        優化設計是指在設計領域將最優化技術和計算機計算技術結合應用,為工程設計提供一種重要的科學設計方鼙,在解決復雜設計問題時,從眾多設計方案中確定最完善或者最適合的設計方案。最優化技術是優化設計全過程中方法、技術的總和。·它主要有兩部分的內容:優化設計問題中的建模技術和求解技術。將實際設計問題抽象成優化設計問題,然后建立起符合實際設計要求的優化設計數學模型,是建模技術需要解決的問題。建立實際問題的優化數學模型,不僅需要熟悉掌握優化設計的基本理論知識、問題抽象和數學模型處理的基本技能,更重要的是要具有該設計領域的豐富的設計經驗。同時,在優化設計求解過程中,要不斷地分析實際問題與數學模型的差距,不斷地修正優化設計數學模型。
        4.仿真技術
        仿真技術是借助計算機,用系統的模型對真實系統或設計中的系統進行試驗,以達到分析、研究和設計該系統的目的。利用仿真技術既可以預示或再現系統的運動規律過程,也可以對無法直接進行試驗的系統進行仿真試驗研究。通過仿真,可以將產品在制造和使用過程中可能發生的問題提前到設計階段來處理,以期減少成本、節約經費、縮短產品開發周期和提高產品質量。
      白马王子